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PENETRATION OF INTENSE PULSED MAGNETIC FIELDS INTO A CONDUCTOR 

S. M. Ponomarev UDC 538.24.42+517.956 

The penetration of a pulsed magnetic field into an incompressible conductor is treated 
with consideration of Joulean heat liberation. Solutions are obtained for the case of pene- 
tration of a strongly decreasing magnetic field (significantly exceeding the saturation 
threshold) into a conductive semispace with planar boundary at constant specific heat and 
thermal conductivity. It is shown that consideration of the effect of bias current, where 
the limiting magnetic field is specified in the form of a step function, is of principle 
significance as regards both surface heating of the conductor and maintenance of intense 
magnetic fields in experimental equipment with planar boundaries. 

It is well known [i, 2] that penetration of an intense magnetic field H(x, t) into a 
planar incompressible conductor (x > 0) can be described by the equations (in MKS units): 

- - O H / O x  = ] + eoeROE/Ot , OE/Ox = - -popROH/Ot ,  ] = ~E ,  

OQ/Ot = ]2/~ _ Oq/Ox, q = - ~ O 0 / O x  - %Oq/Ot, Q = cvO , ( 1 )  

w h e r e  j ( x ,  t )  i s  t h e  v o l u m e  c o n d u c t i o n  c u r r e n t  d e n s i t y ;  E ( x ,  t )  i s  t h e  e l e c t r i c  f i e l d  
s t r e n g t h ;  e 0 = 8 . 8 5 " 1 0  -12 A ' s e c / ( V ' m ) ;  ~0 = 4 7 " 1 0 - 7  V ' s e c / ( A ' m ) ;  ~R, eR a r e  t h e  r e l a t i v e  
p e r m u t i v i t i e s ,  w h i c h  we a s s u m e  c o n s t a n t  ( w i t h  e i t h e r  ~R = eR = 1, o r  ~R = 1, eR = 0,  i f  we 
n e g l e c t  d i s p l a c e m e n t  c u r r e n t  a s  c o m p a r e d  t o  c o n d u c t i o n  c u r r e n t ) ;  o = c o n s t  i s  t h e  c o n d u c t i v -  
i t y  of the medium; Q(x, t) is the increment in heat content relative to the state at 0~ 
q(x, t) is the thermal flux density; 0(x, t) is the conductor temperature; % is the thermal 
conductivity coefficient; x0 = const is the thermal flux relaxation time; c V is the specific 
heat of the conductor. 

We will note that if the characteristic thermal flux relaxation time is large in com- 
parison with the relaxation time ~0, then q/T08q/St ~ 1 and the fifth equation of Eq. (i) 
transforms to the usual Fourier law q = -%38/8x. And if the thermal flux changes signifi- 
cantly more rapidly than relaxation occurs, then 8q/St m q/T0 and the fifth expression of 
Eq. (i) takes on the form 

, oq  ~, oO 
- ( 2 )  

Ot ~o Ox " 

Neglecting displacement current in comparison to conduction current and taking T o = 0, 
we consider the process of magnetic field penetration into the conducting semispace x > 0 
with the following boundary and initial conditions: 

H(O, t) = Ho, q(O, t) =- 0 ( t >  0); 

~(x ,  O ) = O , Q ( x , O ) = O  ( O < z < o o )  
(3) 

(4) 
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(H 0 = const is the intense magnetic field). 

It is obvious that system (i) can be reduced by eliminating the functions j, E, 
8 to a pair of equations 

Og_=b O~H OQ 1 (~ f )2  
o ,  0x ' o,  o - : -  + k (b = k = 

We will now find a solution to system (3)-(5). It can easily be seen that the self- 
similar variable is representable in the form ~ = x/2 ~b-/. We perform the replacement: 

q, and 

(5) 

H(x, t)= Hoh(~), Q(x, t)= ~oH~g(~) 
From Eqs. (3)-(5) we have 

h" = --2~h' ( 0 < ~ < ~ ) ,  h(O) = t, 

So lv ing  t he  problem of  Eq. (6 ) ,  we f i n d  

h ( ~ )  = l - r ( ~ )  

Using Eq. 

(g (~) ~> 0). 

h(oo) = O. 

( ~ ) 
r ( ~ )  = V~ o J & " 

(7) in Eq. (5) and considering Eqs. (3) and (4), we have 

(6) 

(7) 

2b g" +--F[g' 

Solving Eq. (8 ) ,  we find 

4b 
nk exp(--2~ 2) ( O < [ < c o ) ,  g'(O)=O, 

g(~)=A-- a--~.)e k [)-e " dTJdz 

(A = V n4-----~ i e(-~-')*' [t --dp (~: V..~-)] dl: ) . 
Using the well known expressions of [3], we obtain 

V 2k i+ I--%- 
A t In 

V 2k V I _ ~ '  t - - -g-  i-- 

and considering Eq. (9), we have 

We will compare Eq. 

g ( ~ )  = O. (8) 

(9) 

(10 )  

2 Q (0, t)= ~oHo A. 

(ii) with Kidder's well known result [i]: 

Q (o, t) ~ t~oHo ~-~ 

(11) 

(12) 

In particular, for copper k/b = 0.009 [i] and from Eqs. (i0) and (12), we find A = 1.7 and 
B=I.5. 

Let Q, be the quantity of heat required for heating a unit volume of the semiconductor 
from its initial temperature to the boiling temperature and its complete evaporation. In 
the future we will assume that upon absorption of the heat Q, there occurs a change in the 
conductivity of the material filling the semispace: material is converted from conductor to 
dielectric, i.e., the conductivity of the material changes by a law 

~ = {:o = const for Q<Q,, 
for Q = Q,. (13) 

For example, for copper Q, = 4.7"101~ J/m 3 [4]. 

It is evident from Eq. (ii) that if the magnetic field H 0 is sufficiently large (H 0 > 
Hmi n = ~./~0A), then the surface upon which the conductivity falls to zero (the phase tran- 
sition surface), can penetrate into the semispace x > 0 by a law x = X(t). 
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Neglecting displacement currents and assuming T 0 = 0, below we will consider the pro- 
cess of penetration of an intense magnetic field H 0 into the semispace x > 0 in the presence 
of the phase transition of Eq. (13), assuming that upon the phase transition surface the 
conditions 

H(x,t)l~=x(,)=Ho, Q l x = x ( t ) = Q , ,  ~ oO x = x ( ~  0 
~v o~ (14) 

are satisfied. 

Thus, we will find a solution of Eqs. (4), (5), and (14). It can easily be seen that 
the self-similar variable can be represented in the form $ = x/2 /bt, where b = i/o0~ 0. 
On the phase transition boundary $ = ~ (where ~ is an unknown constant). We write the law 
of phase transition boundary motion in the form 

x =  X( t )  = 2 a V ~  ( ~ =  c o n s t ~ O ) .  (15)  

We take H(x, t) = H0h(g), Q(x, t) = p0H02g(g) (g(~) e 0). We now have 

h "  = - - 2 ~ h '  ( a < ~ < o o ) ,  h(a) = l ,  h ( ~ )  = O. (16)  

S o l v i n g  Eq. ( 1 6 ) ,  we o b t a i n  

h(~) = (1 -- m(~)) / ( l  -- O(a)) .  (17)  

Us ing  Eq. (17)  in  Eq. ( 5 ) ,  and c o n s i d e r i n g  Eqs .  (4)  and ( 1 4 ) ,  we f i n d  

2b 4bexp(--2~2) ( a < ~ < ~ ) ,  g ' ( ~ ) = O ,  g ( ~ ) = O ;  (18)  
g" + -~- ~g' = -- ~k[l__ ~ (~)12 

g (a) = O,/9oH~. ( 19 ) 

Solving Eq. (18), we have 

--~ (~)]~ e e 

To determine the unknown constant a, we use Eq. (19). Then 

[ t - -  aP(=)l 2 =e  t - - ~  T d r - -  ~0H~Q*. (20)  

Then s o l u t i o n  o f  Eq. (20)  y i e l d s  a .  

I f  in  Eq. (20)  a = 0, t h e n ,  c a l c u l a t i n g  t h e  i n t e g r a l  and w i t h  c o n s i d e r a t i o n  o f  Eq. ( 1 0 ) ,  
we o b t a i n  A = Q, /~oHo 2 Hence ,  i f  H 0 = Hmi n = ],/Q,/Oo A, i t  f o l l o w s  f rom Eqs.  (15)  and ( 2 0 ) ,  
t h a t  t h e  r a t e  o f  m o t i o n  o f  t h e  p h a s e  b o u n d a r y  i s  e q u a l  t o  z e r o .  

In  Eq. (20)  l e t  a + +~. Us ing  t h e  w e l l  known [5] a s y m p t o t e  o f  t h e  e r r o r  i n t e g r a l  r  
as  ~ §  

]/~ ~ -  (1 +o(t)) (21) 

and t h e  r u l e  f o r  i n t e g r a t i o n  o f  a s y m p t o t i c  e x p a n s i o n s ,  we have  

- -  = e - t  ( 2 2 )  

2 ~ 2  

I t  i s  known [6] t h a t  as  a § +~ 
oo 

j . e _ t  e--2~2 
- - 7  dt --  (I + o(t)). (23)  

2 ~  2 
2r Z 

G o n s i d e r i n g  Eqs.  ( 2 1 ) - ( 2 3 )  and t r a n s f o r m i n g  in  Eq. (20)  t o  t h e  l i m i t  as  a § +~, we f i n d  t h e  
l i m i t i n g  v a l u e  o f  m a g n e t i c  f i e l d  H 0 = Hma x = ~ Q ~  We w i l l  n o t e  t h a t  Hma x i s  i n d e p e n d e n t  
o f  t .  Thus ,  w i t h i n  t h e  f r a m e w o r k  o f  t h e  m a t h e m a t i c a l  model  o f  Eqs.  ( 4 ) ,  ( 5 ) ,  and ( 1 4 ) ,  m a i n -  
t e n a n c e  o f  m a g n e t i c  f i e l d s  g r e a t e r  t h a n  Hma x i s  i m p o s s i b l e  in  any  e x p e r i m e n t a l  d e v i c e  w i t h  
p l a n a r  b o u n d a r i e s  ( f o r  t h e  c a s e  X = 0, t h e  v a l u e  o f  Hma x was o b t a i n e d  in  [4 ,  7 ] ) .  

In  t h e  a b o v e  t r e a t m e n t ,  c o n s i d e r i n g  t h e  p r o c e s s  o f  p e n e t r a t i o n  o f  an i m p u l s i v e  m a g n e t i c  
f i e l d  i n t o  a c o n d u c t o r ,  we h a v e  n e g l e c t e d  d i s p l a c e m e n t  c u r r e n t  as  compared  t o  c o n d u c t i o n  
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current in Maxwell's equations. As a result, we have certain assertions inadeNuate for 
physical experiment. For example, in the problem of Eqs. (3)-(5), lim ( ! OH / = lim E(O, 

~ - ~ 0  \ ~ OX x=O] t~+O 

t) =@~, although it is physically obvious that this cannot be the" case. 

Below we will consider the problem of penetration of an impulsive magnetic field into 
a conductive semispace x > 0 with consideration of the term produced by displacement current. 

Thus, assuming for simplicity of calculation that I = 0 and taking 

E(z, 0) 0, q(x, 0 ) = 0  ( 0 < x < ~ ) ,  (24) 

we f i n d  a s o l u t i o n  t o  t he  p rob lem o f  Eqs. ( 1 ) ,  ( 3 ) ,  ( 4 ) ,  and (24)  f o r  BR = ER = 1. 

I t  can e a s i l y  be seen  t h a t  by e l i m i n a t i n g  t h e  f u n c t i o n s  j and E, we have  t h e  p rob lem 

t a~"H + ou ~ aH ag-H H(0, $ )= / /0 ,  H(x,  O) OH = 0  ( O < x < o ~ )  
8t ----T 8t ax 2 ' ~ at t=o 

(where  c = 1/ Ve0,u0 i s  t h e  speed  of  l i g h t  in  v a c u o ) .  The s o l u t i o n  i s  known [ 5 ] :  
t t 

_ _  ] /  g2 exp ~ t > 

t t ( x , t )  = !  

] 0 . f o r  t ~  ~x 
t c 

[ I 0 ( x )  i s  a f i r s t  o r d e r  B e s s e l  f u n c t i o n  o f  z e r o  o r d e r  w i t h  i m a g i n a r y  a r g u m e n t ] .  Hence from 
Eq. (1)  

- -  exp - -  t for t ~ @ ,  
E(x, t)= ~ (25) 

0 fo~ t < @  

I f  x0 = 0, t h e n  from Eq. (1)  q (x ,  t )  = 0. I f  x o # 0, t h e n ,  w r i t i n g  t h e  f i f t h  e q u a t i o n  o f  
s y s t e m  (1)  in  t h e  form 3 / ~ t [ q  exp ( ( 1 / x 0 ) - t ) ]  = 0  and c o n s i d e r i n g  Eq. ( 2 4 ) ,  we have  q ( x ,  t )  = 
0. Us ing  t h i s  e q u a l i t y  in  Eq. (1)  and s o l v i n g  t h e  p rob lem f o r  Q(x, t ) ,  we o b t a i n  

t t 

! T0 ~0H0 y2 _ ~ -  exp - -  ~ g dg for t > T-' 

Q (z, t) = { _~ 

0 for t < :  --x . 
[ c 

Thus,  on t h e  c o n d u c t o r  s u r f a c e  

80 

0 

I t  f o l l o w s  f rom Eq. (26)  t h a t  w i t h i n  t h e  f ramework o f  t h e  m a t h e m a t i c a l  model o f  Eqs.  ( 1 ) ,  
/ 2Q, 

(3), (4), and (24) for any magnetic fields H0, including superstrong ones H 0 > V -~-o ' 
there exists a finite time interval to, defined by the equation 

~t 
s o 

P0H] . l 0 exp (--  x) tiT, (27)  
0 

o v e r  t h e  c o u r s e  o f  which  t h e  p l a n a r  s u r f a c e  o f  t h e  c o n d u c t o r  x = 0 r ema ins  c o n d u c t i v e  (does  
n o t  unde r go  a phase  t r a n s i t i o n ) .  For  example ,  f o r  c o p p e r  a t  o = 53"106 (fl 'm) -1 ,  H = ( 1 / 3 ) "  
Hmi n = 5 .107  A/m = 0 .62  MOe f rom Eq. (27)  we o b t a i n  x0 : 36 s e c .  

Z 

F i g u r e  1 shows a g r aph  of  t h e  f u n c t i o n  F o ( z ) =  ~ i ~ ( 2 )  exp(_T)dx. We n o t e  t h a t  as z § +~ 

F o ( z )  = ( l / n )  l n z ( 1  + 0 ( 1 ) ) .  0 

Now l e t  X ~ 0. Now, n o t  c o n s i d e r i n g  t h e  p rob lem o f  Eqs.  ( 1 ) ,  ( 3 ) ,  ( 4 ) ,  and (24)  a t  
~R = eR = 1 in general form, we find its solution with the assumption that in place of the 
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e r 

o 2 4 # 

Fig. i 

fifth expression of Eq. 1 we have Eq. (2). It is easily seen that this problem reduces to 

O2q 
=a  2 ~ +/(x,t) ,  q(O,t)=O, q(x,O)= 0__~_ t=0=O (O<x<oo)  

Ot 2 Ox 2 

(where a = ~/~ is the heat propagation rate (a <_ c), f(x, t) = -o a28E2(x, t)/Sx, E(x, 
are defined by Eq. (25)), the solution of which is well known [5]: 

I t _ x  

;7  
q ( x , t ) = {  o o . - ~ ) - ~  

I x + a ( t - - x )  

I,:-<; t 
t 0 x - -a ( t - -T )  

t x+a(t--'~) 

f (z, ~) dz d'~ + ~ -  ! (z, T) dz & fo~ t >  ~ ,  
t_x x-a(t-~) 

a 

] (z, ~) dz dT for t < ~ - .  

Using this solution in Eq. (i) 

Q (0, t) = 

and performing certain calculations, we obtain 

~<0H~o s~ ~'~ - 7 t - ~ x 
a {1 

La+c% 

~7_~ go t �9 

For solid bodies (metals) '~o : i0-ii sec [2], therefore, for example, for copper 
a t / s 

i0 a m/see, v c -c lfl Cv~o ~I0-~- We note that at v = 0 from gq. (28) we have Eq. 

Thus we must study the nonnegative function 

z 

0 

at z > 0, where 0 < v <_ i. 

We will present only one result: 

Fl(z ) = 2/az + o(l/z) for  z --->- ~- oo. 

a : 3 .  

(26). 

(28)  

(29) 

t )  

In reality, considering the known asymptote of the Bessel functions [5], we find 

= x d x + 7 o  + r  dx- 
1/2 0 

co  Z 

t S e--2(Y-1)~ 
1 

Whence ,  u s i n g  t h e  known e x p r e s s i o n s  o f  [3 ]  and  i n t e g r a t i n g  t h e  f i r s t  i n t e g r a l  by  p a r t s ,  we 
h a v e  

2 1 § 
and considering the asymptote 10(z/4) as z + +=, we obtain Eq. (29). 
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ANALYSIS OF THE STRESSED STATE OF A SINGLE-TURN BIMETALLIC SOLENOID 

IN AN INTENSE PULSED MAGNETIC FIELD 

I. M. Karpova and V. V. Titkov UDC 538.244(075.8) 

One of the characteristic manifestations of interaction of a pulsed electromagnetic 
field with conductors is Joulean heating which is nonuniform over the conductor thickness. 
In the design of electrophysical apparatus using large pulsed currents and magnetic fields 
one must consider the intense heating of the surface of conductive elements which occurs due 
to the abrupt surface effect. The high heating temperature is a factor which limits capa- 
bilities and uses of equipment since it markedly degrades the strength properties of conduc- 
tive material, which may lead to large deformation and failure of its conductive elements. 

Among the components of high power pulsed electrophysical equipment subjected to the 
most severe loads are single turn solenoids (Fig. i) intended for repetitive generation of 
intense magnetic fields (B m ~ 50 T). In such cases heating of the inner surface reaches 
hundreds of degrees [i]. The mechanical loads produced by electromagnetic field pondermotor 
forces can be estimated from the maximum magnetic pressure, equal to the magnetic field en- 
ergy density in the working volume of the solenoid [2]: 

2 
= B /2 o (1)  

(where B m is the induction amplitude, ~0 is the magnetic constant of a vacuum). Electrody- 
namic forces are not the only cause of high mechanical stresses in the solenoid. Upon non- 
uniform heating of the conductor, produced by the abrupt surface effect, thermoelastic 
stresses develop, which are determined by the gradient of the temperature distribution over 
thickness. Since the highest temperature is achieved at the end of the field pulse, when 
the electromagnetic forces are negligibly small, the latter can be neglected in considering 
the maximum values of the temperature stresses. 

For the abrupt surface effect it is simple to obtain an estimate of the thermoelastic 
stresses by using Lorentz's expression for a long hollow cylinder nonuniformly heated over 
wall thickness [3]. The azimuthal and axial stresses on the inner cylinder surface can then 
be written in the form 

2 Or dr - -  0 (R~) 
~ ( R O  = (~o ( R O  = ~ - ~- ' ( 2 )  

R e R i . 

where Ri, R e are the inner and outer radii of the cylinder @ = @(r) is the temperature dis- 
tribution over the cylinder wall thickness, G0 is the coefficient of linear thermal expan- 
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